Unsolved problems in dense hydrogen and helium

D. Saumon

Los Alamos National Laboratory

© 2001 Lynette Cook

IHEDS Workshop 4 August 2010, LA-UR-10-05387

Image: L. Cook, used with permission

Very cool white dwarfs and their atmospheres **Three opacity problems: Collision-induced absorption by H₂** What is the opacity of cool, dense He? C₂ Swan bands in dense He

Very Cool White Dwarfs ($T_{eff} < 6000$ K)

White dwarfs

The end stage of the evolution of ~95% of all stars: dead stars

Mass ~ 0.5 mass of Sun Radius ~ radius of Earth! Very high surface gravity ~ 10⁸ cm/s² (= 10000g!)

No internal source of energy. Evolution primarily a cooling problem as the star radiates its internal heat to space A young WD starts with $T_{surf} \sim 10^5$ K The oldest WD known have $T_{surf} \sim 4000$ K

See presentation by Don Winget at 3:30PM

Very Cool White Dwarfs (T_{eff} < 6000K)

Well-defined drop in the space density of WDs at low luminosity

→ finite age of the population (~9Gyr)

A method for dating stellar populations: WD cosmochronology

The age determination hinges on the properties of the coolest known WDs.

What are their T_{eff}, gravity and surface composition?

Based on fitting spectra with models

Analysis of stellar spectra

The Sun's spectrum is very rich in information

Very cool WD spectra are featureless: For T_{eff} < 12000K (He atmospheres) or 5000K (H) Analysis relies on continuum opacities only

Figure from Kilic et al. (2010)

• Los Alamos

Physical conditions in very cool WD atmospheres

"Atmosphere" of a star:

The observable "surface" layer where the spectrum is formed and light escapes to space

Main physical parameters:

Effective Temperature, T_{eff} Surface gravity, log g (cm/s²) Composition: H, He, traces of C, Ca, Mg...

Physical conditions (high gravity!):

Pure H: $T \sim 10^3 - 10^4 \text{ K}$ $\rho < 0.01 \text{ g/cm}^3$ Pure He: $T \sim 1000 - 5000\text{K}$ $\rho < 1\text{g/cm}^3 \text{ (~Mbar!)}$

EOS well understood but opacities are not!

Very cool white dwarfs and their atmospheres **Three opacity problems: Collision-induced absorption by H₂** Collision broadening of Lyman α of H What is the opacity of cool, dense He?

Collision-induced absorption (CIA) by H₂

H₂ molecule

no permanent dipole moment \rightarrow radiative dipole transitions are forbidden

However

during a collision (with H_2 , H, He, etc), a temporary dipole is induced. dipole transition is possible \rightarrow Collision-induced absorption

$$\alpha(\nu,\rho,T) = \begin{array}{c} q_{4}(\nu,T) + q_{2}(\nu,T_{4})\rho + q_{3}(\nu,T_{4})\rho^{2} + \dots \\ = 0 \text{ (dipole)} \quad 2\text{-body collisions} \quad 3\text{-body collisions} \end{array}$$

H_2 CIA present in WD atmospheres for T_{eff} <~ 5500K

Figure from Bergeron et al (1994)

Collision-induced absorption (CIA) by H₂

Available data

H₂-H₂: T=12 - 300K, up to 5 kbar, Δν=0, 1, 2 H₂-He: T= 77 - 300K, up to 6.7 kbar, Δν=0, 1 3- and 4-body virial spectral coefficients (Δν=0 only): T=300K up to 6.7kbar

Diamond Anvil Cell: H₂ 5-9 GPa 300-400K Δv =1 only (liquid & solid) Shock tube: H₂-Ar, H₂-Ne, H₂-Xe, ~150 bar T<3500K Δv =1 only

Collision-induced absorption (CIA) by H₂

First principles calculations of H₂-H₂ and H₂-He CIA

Up to 7000K, $\Delta v=0$, 1, 2, 3 (2-body collisions only), to various degrees of approximation/accuracy Very elaborate (and more uncertain) at high T and high V

Spectral *moments*: good agreement with 3-body virial coefficient for H_2 - H_2 and H_2 -He (T<300K)

No spectrum calculation for 3-body interaction

Agreement with data is excellent (T<300K)

Figure from Borysow (1991)

A major puzzle: What are these?

~15 stars like LHS 3250 ("ultracool white dwarfs") Apparently among the coolest WDs known Cannot be fit by any model so far! Strong suspicion of mixed H/He composition T_{eff}, g, composition, significance?

Inadequate H₂-He CIA strongly suspected

Los Alamos

Testing CIA calculations in the lab?

Calculations are untested above 300K and of limited reliability for $\Delta v \ge 2$

A recent, state-of-the-art calculation of H₂-H₂ CIA (Frommhold et al.): Excellent agreement with previous calculation for T<1000K Factors of 2 change for T=2000K

CIA measurements under cool WD conditions sorely needed! Observe emission in shock experiments (gas gun?)

$H_2 - H_2$	1000-5000K	0.1-5kbar	0.5-10 μm
H ₂ -He	1000-5000K	0.1-30GPa	0.5-10 μm
He-He-He?	2000-5000K	10-100GPa	0.5-10 μm?

Challenges:

Making accurate measurements and diagnostics

Separating other sources of opacity (H₂-H CIA, H⁻ bf+ff,H₃⁺ bf), H₂ dissociation Absorption length 10^{-5} to 10^{-2}

$$L = \frac{10^{-3} \text{ to } 10^{-2}}{\rho^2 \text{ (g/cm^3)}} \text{ mm}$$

Very cool white dwarfs and their atmospheres **Three opacity problems: Collision-induced absorption by H₂** What is the opacity of cool, dense He? C₂ Swan bands in dense He

Pure He WD atmospheres at $T_{eff} < 6000 K$

The X-games of stellar atmospheres:

- T < 7000K</th> ρ up to 1g/cm³P up to ~100GPaAn ocean of helium!No other element detected (log Ca/He < -12 log H/He < -5)</td>
- The high pressure is a consequence of the low opacity of He
 - No molecules, no optical/IR lines, ~ no free electrons I_p=24.6eV
 - Absorption mechanisms: Rayleigh scattering
 - He⁻ ff (inverse bremsstrahlung)
 - He-He-He CIA? He₂⁺? HeH⁺?
- What is the opacity of cool, dense He?
 - Very few measurements. Calculations are very hard.

Basic difficulty

- $I_p=24.6 \text{ eV}$ T~ 0.5 eV \rightarrow e^{-lp/kT} ~ 10⁻²² VERY low ionization with high T-sensitivity
- Dilute gas physics (ionization equilibrium, opacities): No longer valid

Approach as a problem of condensed (liquid) matter: ab initio methods

- Calculate the direct band gap $E_{qap}(\rho,T)$ with QMD-DFT (GGA)
- Calculate the electronic conductivity (Kubo-Greenwood approximation)
- **Derive the opacity from conductivity (Kramers-Kronig relations)**

Difficulty

We're trying to estimate the conductivity of a very good insulator
 QMD-DFT methods notorious for underestimating band gap
 Conductivity ~ e^{-Egap/2kT} is very sensitive to E_{gap}!
 Band gap corrections: GW method, hybrid functional 3-6 eV!

Resulting uncertainty on σ_{DC} ~ factor of 30 at T=0.5eV!

Ab initio conductivity meets experiments

Strong disagreement!

Calculation: little ρ dependence, rapid increase with T. Gap closes at ~13g/cm^3

Data: strong density dependence, gap closes at < 2g/cm³.

No data in regime of interest to cool He atmospheres

Figure from Kowalski et al. (2006)

Measuring the opacity of cool, dense He

The best calculation of the opacity of cool, dense He remain very uncertain.
The only data near the relevant regime (σ_{DC}) do not look right.
Good measurements will be very helpful
Optical and near infrared absorption of He in the 0.1 -1 Mbar range, T~0.5 eV
Sampling a range of (T,P) points will help identify the absorption mechanisms as well as effectively test models
Impurities (H, Ca, Mg, Si) in homeopathic dilutions would mimic a more realistic composition

Challenge

- The absorption coefficient is very low
- May be difficult to isolate the various absorption mechanisms

Very cool white dwarfs and their atmospheres **Three opacity problems: Collision-induced absorption by H₂** What is the opacity of cool, dense He? C₂ Swan bands in dense He

Carbon in very cool WDs

Some WDs with He-rich atmospheres show carbon in their spectra: Swan bands of C_2 ("DQ" white dwarfs).

log C/He= -7 to -3

Carbon is dredged up from the core by convection/diffusion

25 year old puzzle:

Below T_{eff}~6000K, the bands are shifted to the blue by ~700cm⁻¹ ("DQ peculiar" white dwarfs, <10 known)

Most likely explanation(s):

Pressure-shifted C₂ bands? But P may not be higher than in normal DQ.

Magnetic field? But only 1 DQp is known to be magnetic (B~100 MGauss)

Both?

Figure from Schmidt, Bergeron & Fegley (1995)

Spectroscopy of C₂ Swan system at high-P

There is no lab measurement of pressure-shifts of the C₂ Swan bands How much pressure is needed to shift the bands by 700cm⁻¹?

Desired measurement

Optical spectroscopy of C+He mixture 430-600nm T = 4000-7000K P ~ 0.1-10 GPa With a magnetic field (B > 0.1MG)?

Challenge:

Can a C+He mixture be done?

C+H can be done fairly easily but could introduce absorption by various CH compounds

Summary

Very cool WDs present many interesting problems in dense fluid physics

Opacities are particularly challenging (theory and experiments)

Limited knowledge casts significant uncertainty on the inferred properties of several types of very cool white dwarfs

Three pressing problems in need of data

Collision-induced absorption of H₂ and H₂+He mixtures at high T and P

Pure (or nearly pure) opacity of cool, dense He

Effect of pressure (and magnetic fields) on the Swan band system of C₂

